

The Sterling & Francine Clark Art Institute

Williamstown, MA.

Thesis Technical Assignment II

Mohamed S. Alali, CM Dr. Rob Leicht October 19, 2011

Executive Summary

The second technical report provides a more in depth approach to the some of the information and systems developed in the previous technical report. It will discuss the project schedule and the structural system in more detail in addition to LEED evaluation and Building Information Modeling uses.

In the detailed project schedule, there will be 125 tasks that illustrate the project sequences. A brief narrative will describe the sequence followed in the construction.

Afterwards, the detailed structural system estimate will discuss the main system used in the project. The estimate takeoff was taken by hand while RSMeans CostWorks online tool was used to organize and tabulate findings.

The general conditions estimate will briefly show the percentage of the general conditions costs to the building total cost. The general conditions estimate will not include home office overhead fees but will include monthly fees, staffing, and temporary facilities fees.

In the LEED evaluation section of the report, a draft LEED scorecard will be analyzed. This section will discuss where the LEED credits were achieved and missed.

The final section of the report will a develop building information modeling use list and a level 1 process map. It will also evaluate the he appropriateness of the used and what and why those uses should be implemented since the institute didn't apply develop building information modeling uses.

Table of Contents

Executive Summary
Table of Contents
Detailed Project Schedule
Detailed Structural System Estimate
General Conditions Estimate
LEED Evaluation
Building Information Modeling Use Evaluation
Appendix A – Detail Project Schedule
Appendix B – RSMeans CostWorks Detailed Structural System Estimate
Appendix C – General Conditions Estimate
Appendix D – LEED Scorecard
Appendix E – BIM Worksheets and Plans

Detailed project Schedule

The Sterling and Francine Clark Art Institute project schedule is very straightforward as it can be seen in Appendix A. The construction process is basically broken down into phases following a specific sequence of construction with each representing a specific area of the new building being constructed. Initially, the GMP documents were published on 01/04/2011 were it was approved on 04/04/2011. After which the following steps were Approvals, Coordination, Fabrication and delivery until Excavation began on 09/27/2011. The building is intended to be completed by 09/03/2013 which is very close to a period of construction of 2 years.

The construction schedule is broken down into two main sections initially: Preconstruction and Construction. The preconstruction phase includes procurement, shop drawings, MEP coordination, budget development, fabrication and delivery. The Construction process in the detailed project schedule is broken down by trade which is also broken down further by Area; this arrangement helps view the total sequential tasks that will take place within a specific area in the project. After the structural enclosure is completed, Interior fit out process takes place to install the rest of the systems such as HVAC, Mechanical Piping, Electrical and Fire protection.

Further, the order in which the tasks are performed within a specific area are constant throughout the project as it can be seen in Appendix A. The project is actually broken down into smaller section by area where each phase takes places in at least 4 parts and they are such in the following sequence: East Lower Lobby, MEP/ Reservoir, Display and East MER. Furthermore, the East MER area is broken down into a central section, East and West. The structure section includes the 4 main areas while the rest of the trades would have the East MER broken down into central, east and west since it does more time and is based on a set of tasks that would have their own detailed broken down sequence.

See APPENDIX A for the detailed project schedules.

Detailed Structural System Estimate

The structural system for the new addition of the institute is mainly cast in place concrete. The foundation is a two-way reinforced cast in place flat slab with continuous mat top and bottom reinforcement. In this section of the report, a detailed structural system estimate using the RSMeams CostWorks online tool and the structural drawings provided is developed. The structural drawings were utilized to extract as much detailed information regarding the structural system of the project as possible. The RSMeams CostWorks online tool was used to create a detailed Unit Price Estimate of the system. Unfortunately, there are no actual cost data from the owner as they are classified.

The takeoff of the structural system was done by hand. That included total cubic yards of concrete, calculating total rebar poundage, formwork, etc. Table 1.1 will show a summary of the estimated costs for the concrete structural system of the building.

Table 1	1.1: summary of	estimated costs f	for structural system	em
Sub System Type	Mat. O&P	Labor O&P	Equip. O&P	Total O&P
Concrete	\$1,808,065	\$552,008	\$78,787	\$2,438,860
Rebar	\$408,093	\$451,392	\$0	\$859,485
Forms & Shoring	\$305,150	\$857,625	\$0	\$1,162,776
Total	\$2,521,308	\$1,861,025	\$78,787	\$4,461,120

Due to the irregular shaped building, it was difficult to find a perfect typical bay for the project. As a result, the best match of a typical bay was selected for basement and first floor (Fig. 1) structures and another bay for the roof structure.

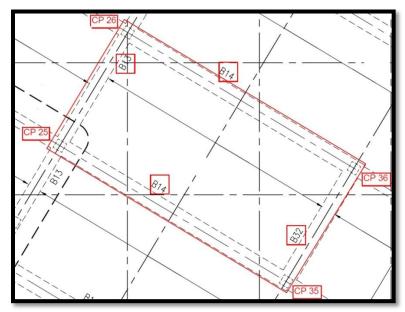


Fig. 1 – Typical bay used in developing the estimate

The following assumptions were made during calculating the detailed estimate:

- 1. Roof bay reinforcement sizes were accounted similar to the ones on the typical bay since they fall in the same rebar size estimation category. The RSMeans tool will group rebars from [#]3-[#]7 to calculate the estimate which will make no difference in final cost.
- 2. Wall heights were averaged due to the slight differences.
- 3. For the irregularity of the building shape:
 - a. Square root of mat slab area was taken as if it is a regular square shaped building to make the rebar calculation of mat slab feasible (length of rebars and how it would be placed).
 - b. The same concept of the previous point was applied in foundation wall rebar calculation.
 - c. The average rebar length in beams and columns was taken to calculate total rebar weight for each since RSMeans tool will group rebars as mentioned earlier.
 - See APPENDIX B for the detailed RSMeans CostWorks estimates.

General Conditions Estimate:

The General Conditions (GC) estimate was broken into two categories. The first category is the Primary Personnel consists of Project Executive, Project Engineer, Project Manager, Superintendent, MEP Coordinator, and Project Accountant. The other category which is the Field Office Expense & Temporary Facilities which includes office trailers expenses, electric and water consumption expenses, monthly telephone expenses, furniture, office supplies and equipment, porta-johns, temporary storage trailers, tools, etc.

Table 2.1 summarizes the Project's GC based on the mentioned two categories above. Note that the cost of the GC developed doesn't reflect the actual dollar amount in the original contracts.

Table 2.1: General Conditions Sun	nmary											
Item Cost												
Primary Personnel	\$2,242,290											
Field Office Expense & Temporary Facilities	\$1,399,006											
TOTAL GC COST	\$3,641,296											

From the Table 2.1, the Primary Personnel costs are about 61% of the total GC costs whereas the Field Office Expense & Temporary Facilities costs are about 38% of the total GC costs.

The total GC cost is about 13% of the total project cost of \$28 million. This number was reached based on the best estimate could be made without information provided by the owner representative.

> See APPENDIX C for the detailed GC estimates tables.

LEED Evaluation

The Sterling and Francine Clark Art Institute is trying to build the new addition environmental friendly. So, they decided to get a LEED certification, and they are aiming for a Silver rating. The building has met all the requirements' prerequisites defined by the U.S. Green Building Council (USGBC) for the LEED certification. This analysis is to show what has been achieved or in the progress of achieving in terms of LEED requirements. The building has achieved the minimum Silver rating requirements according to the draft LEED-NC v2.2 Scorecard provided by the owner representative. However, it is still under the goal it is aiming for by nine points according to the most recent scorecard (LEED-NC 2009). The following bullet point will analyze the Sterling and Francine Clark Art Institute LEED draft scorecard. They will be broken down according to main categories of the scorecard where the sub-bullet points are broken down to the positive credits achieved and negative credits missed respectively.

- Sustainable Sites:
 - The Sterling and Francine Clark Art Institute is reducing pollution and land development impacts from automobile use. For instance, the building provides bicycle racks within 200 yards of the building entrance, shower and changing facilities in the building, and no new parking. The building also reduces pollution from storm water runoff and eliminating contaminants by implementing a storm water runoff management plan.
 - The Sterling and Francine Clark Art Institute did not have many options to choose where to build the new addition. As a result, they could not get the best building location, to avoid the development of inappropriate sites and reduce the environmental impact, according to LEED specifications. They did not reduce pressure on undeveloped lands by rehabilitating damaged sites (Brownfields). In terms of vehicular pollution, they did not meet the requirements for Alternative Transportation—Public Transportation Access to reduce pollution and land development impacts. Also, they did not reduce the input power of all nonemergency interior luminaires with a direct line of sight to any openings in the envelope neither shielded All openings in the envelope (translucent or transparent) with a direct line of sight to any nonemergency luminaires. That resulted in not meeting the requirements of light pollution reduction credits.
- Water Efficiency:
 - The new addition is maximizing water efficiency within the building. It is almost achieving the maximum possible points in this category. In terms of water efficient landscaping, the building eliminates the use of potable water for irrigation. Moreover, it reduces potable water use for building sewage by 50% through the use of the plumbing fixtures that hold water such as efficient water closets and urinals. With all the efforts combined, the building can save 30% of its

total water usage.

- Energy Atmosphere:
 - The building is going in the direction of reducing the impacts associated with excessive energy use. It increases the levels of energy performance further than the energy atmosphere category prerequisites by 21%.
 - The institute is still working on the feasibility on applying most of the requirements of LEED in the Energy Atmosphere category while they applied only two of them. The lack of renewable energy used on site has affected the institute's LEED score negatively.
- Materials and Resources:
 - In terms of materials used in the building, a minimum of 10% of materials were either extracted or manufactured within the building region (within 500 miles radius). Furthermore, a construction and waste management plan is developed and implemented and a minimum of 50% of debris to be recycled.
 - Since the institute decided to demolish an existing building and not to use any of its structure, envelope, and framing as well as not using at least 5%, based on cost, of either salvaged, refurbished, or reused materials, not conserving resources, reducing waste, nor reducing environmental impacts of the new addition were results of that demolition.
- Indoor Environmental Quality:
 - An indoor air quality (IAQ) management plan was developed and implemented for the construction and before occupancy phases of the building. The goal is to reduce IAQ problems and increase construction workers and building occupants comfort. What's more, the use of paints and coatings which are odorous or harmful were minimized on the interior of the building to increase comfort as well as well-being of workers and future occupants. Another aspect is controllability of lighting systems. The flexible controllability of 90% gives the luxury to occupants to adjust lighting according to their needs to improve their productivity, comfort, and most importantly to decrease energy usage.
 - The new addition lacks the following LEED requirements of the indoor environmental quality. The outdoor air monitoring system is to help promoting occupant comfort and well-being. A permanent monitoring system has to be installed in the building to ensure that ventilation systems maintain design minimum requirements according to LEED requirements. Furthermore, LEED requires an improved IQA by ventilating spaces either mechanically (30% more than ASHRAE standards) or naturally (according to CIBSE Applications Manual 10: 2005) to promote occupant comfort and well-being as well. Minimizing and controlling the entry of pollutants into buildings and later cross-contamination of regularly occupied areas was not taken into consideration in the design. If that

October 19, 2011 THE STERLING & FRANCINE CLARK ART INSTITUTE

was implemented in the building design, the occupant exposure to potentially hazardous particulates and chemical pollutants would have been minimized. The building also lacks thermal comfort according to LEED requirements. For example, to provide a comfortable thermal environment to promote occupant productivity and comfort the building has to provide at least 50% individual comfort controls to meet an individual needs and preferences. According to the nature of the building, lighting has to be highly controlled to serve galleries, for example, at best. So, the building lost the connection between indoor and outdoor spaces through the daylight and outdoor views into the regularly occupied areas of the building.

- Innovation and Design Process & Regional Priority Credits
 - The Sterling and Francine Clark Art Institute new addition gained all maximum possible points in those categories.

See APPENDIX D for the LEED Scorecard.

Building Information Modeling Use Evaluation

The Building Information Model (BIM) consists of "*a digital representation of physical and functional characteristics of a facility*" according to the National Building Information Modeling Standard ⁽¹⁾. The key elements to have a successful BIM plan are to have a well-defined plan and to make sure that every team involved in a certain project knows their opportunities and responsibilities applied to them. According to the BIM Execution Planning Guide, "A completed BIM Project Execution Plan should define the appropriate uses for BIM on a project (e.g., design authoring, cost estimating, and design coordination), along with a detailed design and documentation of the process for executing BIM throughout a project's lifecycle."⁽²⁾ For this Assignment, a less detailed BIM documentation will be provided. It will include a Level One Process Map and Goal Use Analysis (Goal Identification and BIM Use Analysis).

The Sterling & Francine Clark Art Institute didn't develop any BIM plans. So, the following BIM use suggestions were developed to show how the institute would have benefited from applying BIM on the new addition.

The first most beneficial BIM use is Asset Management. The asset Management is a process that can aid the maintenance and operation of the Art Museum and its assets and artifacts. The building asset can include the building itself, including its artifacts, and building systems and equipment. This process ensures maintaining, upgrading, and operating assets efficiently at appropriate costs that satisfy both the owner and tenants.

The second use is Engineering Analysis which is a process that manipulates certain tools for structural, lighting, energy, mechanical, and other types of building system analyses to improve the project design. Therefore, it can be applied to analyze the automated systems used in the project (Thermal Comfort and Lighting) to improve the project energy consumption and the quality of the building services.

The third use is Building Systems Analysis, a process that compares the actual building performance to the design specifications and it includes the building mechanical system and its energy use. Mainly, it ensures that building performance matches and maintains design standards. If not, the process will identify areas for improvements. This process can be a supplemental process to the Engineering Analysis and the Sustainability (LEED) Evaluation (next use) processes.

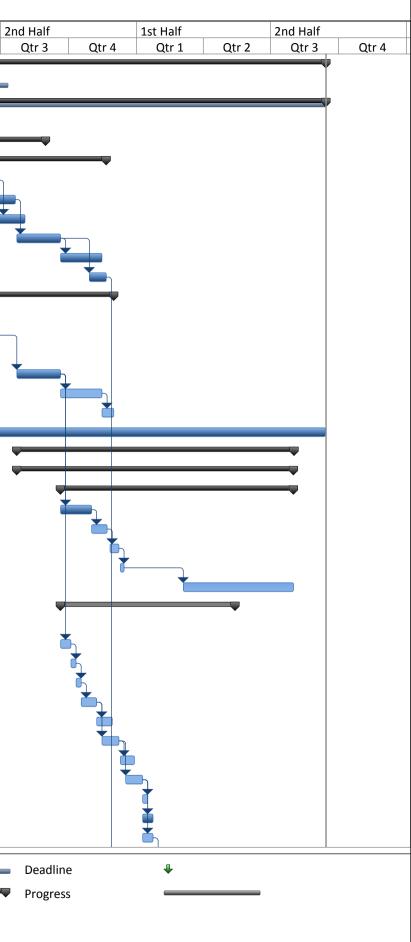
Fourth use of BIM is Sustainability (LEED) Evaluation which is a process that evaluates the project based on U.S. Green Building Council for LEED requirements. Applying this process can speed up design review time and LEED certification process and improve communication within project teams. As mentioned, the Building Systems Analysis can ensure that the building performance matches design specifications to continue maintaining LEED standards after

building occupancy.

Fifth use of BIM is 3D Coordination which is an essential process that can detect any field conflicts may happen in the building during coordination process. By applying this process, it will be easier for the team to get a clearer image of the building and its systems as it is important for applying most of BIM processes as well. This process helps the team visualizing the construction, increase productivity by eliminating conflicts and comparing 3D models of building systems while decreasing construction time, and reducing construction costs.

The last suggest BIM use is Space Management and Tracking. It is a process that allocates, manages, and track assigned workspaces effectively. A 3D model is essential here where the specialized team will utilize it to manage future changes in the use of the space throughout the building's life. The owner is planning to transform one of new addition's spaces to a restaurant. Thus, the Space Management and Tracking process can assist in planning for implementing the future restaurant.

See Appendix E for BIM Worksheets and Plans

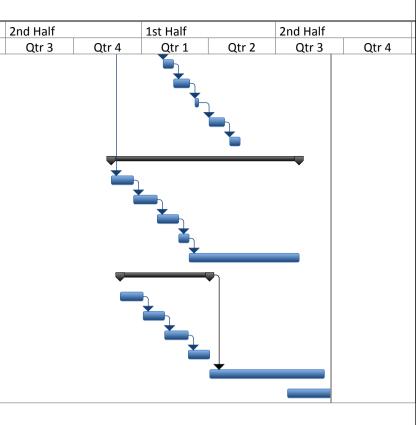

^{(1), (2)} The Computer Integrated Construction Research Program at The Pennsylvania State University. *BIM Project Execution Planning Version 2.0*. University Park: Computer Integrated Construction Research Program at The Pennsylvania State University, 2010. Print.

Appendix A Detailed Project Schedule

ID Task Name Duration Start Finish 1st Half 2nd Half 1st Half 0 Qtr 2 Qtr 1 Qtr 4 Qtr 1 Qtr 3 Qtr 4 Qtr 2 Tue 1/4/11 1 The Clark 706 davs Fri 9/13/13 2 Tue 1/4/11 Mon 4/30/12 Preconstruction 347 days 28 Construction 524 days Tue 9/13/11 Fri 9/13/13 29 Sitework & Excavation 21 days Tue 9/27/11 Tue 10/25/11 32 Structure 253 days Tue 9/13/11 Thu 8/30/12 66 Enclosure 167 days Mon 4/2/12 Tue 11/20/12 67 Install Stone Cladding 63 davs Mon 4/2/12 Wed 6/27/12 68 Central: Install Curtainwall 44 days Tue 5/22/12 Fri 7/20/12 69 Thu 8/2/12 West: Install Stone Cladding 26 days Thu 6/28/12 70 West: Curtainwall Mon 7/23/12 43 days Wed 9/19/12 71 💷 East: Install Curtainwall 40 days Thu 9/20/12 Wed 11/14/12 72 East: Install Stone Cladding 17 days Mon 10/29/12 Tue 11/20/12 73 Fri 2/17/12 Fri 11/30/12 **Roofing & Waterproofing** 206 days 74 East Lower Lobby 16 days Mon 3/12/12 Mon 4/2/12 75 **MER/**Resvoir 16 days Tue 4/17/12 Tue 5/8/12 76 Fri 2/17/12 Fri 3/9/12 Display 16 days 77 Central 43 days Mon 7/23/12 Wed 9/19/12 78 West 40 days Thu 9/20/12 Wed 11/14/12 79 Thu 11/15/12 East 12 days Fri 11/30/12 80 Water Feature 495 days Fri 10/21/11 Thu 9/12/13 81 **Interior Fitout** 269 days Mon 7/23/12 Thu 8/1/13 82 Central 268 days Mon 7/23/12 Wed 7/31/13 89 West 225 days Thu 9/20/12 Wed 7/31/13 90 Install Overhead HVAC 30 days Thu 9/20/12 Wed 10/31/12 91 Thu 11/1/12 Install Overhead HVAC Piping 15 days Wed 11/21/12 92 Install Overhead Electrical 10 days Mon 11/26/12 Fri 12/7/12 93 Install Overhead Sprinkler Mon 12/10/12 5 days Fri 12/14/12 94 Finishes Tue 3/5/13 107 days Wed 7/31/13 95 Lower Level: Display A, B, C / Court / MER / Thu 9/20/12 Mon 5/13/13 168 days Resvoir 96 Survey/Layout 10 days Thu 9/20/12 Wed 10/3/12 97 **Stud Out Interior Partitions** Thu 10/4/12 Wed 10/10/12 5 days 98 Rough-In Overhead Drainage 5 days Thu 10/11/12 Wed 10/17/12 99 Rough-In Overhead MEP pipe 15 days Thu 10/18/12 Wed 11/7/12 100 **Rough-In Overhead Ductwork** 15 days Thu 11/8/12 Wed 11/28/12 101 **Rough-In Overhead Electric** 17 days Thu 11/15/12 Fri 12/7/12 102 🛄 Rough-In Overhead Sprinkler Mains 15 days Mon 12/10/12 Fri 12/28/12 103 🛄 **Install Ceiling Framing** 17 days Mon 12/17/12 Tue 1/8/13 104 💷 **Install Sprinkler Drops** Wed 1/9/13 Tue 1/15/13 5 days 105 🛄 Tue 1/22/13 Install Electrical Drops 10 days Wed 1/9/13 106 🔢 Install Ductwork Drops Wed 1/9/13 Tue 1/22/13 10 days Task Project Summary Inactive Milestone \diamond Manual Summary Rollup Split Manual Summary External Tasks Inactive Summary Project: Detailed project Schedule Date: Thu 10/27/11 E Milestone \diamond Manual Task **External Milestone** Start-only Summary Inactive Task Duration-only Finish-only Э

The Sterling & Francine Clark Art Institue Detailed Project Schedule

Page 1 Mohamed Alali - Technical Assignment 2



	-	1					-		1		1		_
ID		Task Name	Duration	Start	Finish		1st Half		2nd Half		1st Half		
	0					Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	
107		Close Ceiling & Walls	10 days	Wed 1/30/13	Tue 2/12/13								
108		Apply Accounstic Plaster - Ceiling	16 days	Wed 2/13/13	Wed 3/6/13								
109		Prime & Paint Walls & Ceiling	3 days	Thu 3/14/13	Mon 3/18/13								
110		Install Fixtures, Grilles & Devices	15 days	Tue 4/2/13	Mon 4/22/13								
111		Lay & Finish Wood Flooring	10 days	Tue 4/30/13	Mon 5/13/13								
112		East - MEP/ Link	182 days	Wed 11/21/12	Thu 8/1/13								
113		Install Overhead Ductwork	22 days	Wed 11/21/12	Thu 12/20/12								
114		Install Overhead HVAC Piping	22 days	Fri 12/21/12	Mon 1/21/13								
115		Install Overhead Electrical	21 days	Tue 1/22/13	Tue 2/19/13								
116		Install Overhead Sprinkler	10 days	Wed 2/20/13	Tue 3/5/13								
117		Finishes	107 days	Wed 3/6/13	Thu 8/1/13								
118		MEP	87 days	Mon 12/3/12	Tue 4/2/13								
119		Set Electrical Equipment	23 days	Mon 12/3/12	Wed 1/2/13								
120		Set AHUs & Pumps	21 days	Thu 1/3/13	Thu 1/31/13								
121		Rterminations at HVAC systems	22 days	Fri 2/1/13	Mon 3/4/13								
122		Startup HVAC systems	21 days	Tue 3/5/13	Tue 4/2/13								
123		Comissioning	111 days	Wed 4/3/13	Wed 9/4/13								
124		Closeout	43 days	Wed 7/17/13	Fri 9/13/13								

The Sterling & Francine Clark Art Institue Detailed Project Schedule

Project Summary Manual Summary Rollup 🕳 Task Inactive Milestone \diamond Split External Tasks Manual Summary Inactive Summary Project: Detailed project Schedule Date: Thu 10/27/11 \neg Milestone External Milestone \diamondsuit Manual Task Start-only C ٦ Duration-only Finish-only Summary Inactive Task

> Page 2 Mohamed Alali - Technical Assignment 2

Deadline

Progress

₽

Appendix B RSMeans CostWorks Detailed Structural System Estimate

The Sterling And Francine Art Institute Detailed Structural Systems Estimate

Wiiliamstown, MA 01267

Data Release : Year 2011 Quarter 3, Unit Cost Estimate

Quantity	LineNumber	Source SubContracted Ind.	Description	rew Da	aily Labor tput Hours U	it Material Labo	er Equipm	e Total	Ext. Mat.	Ext. Labor	Ext. Equip.	Ext. Total	Mat. O&P Labor O&P Equip.	O&P Total (Ext. Mat. O&	Ext. Labor O&P	Ext. Equip. O&P	Ext. Total O&P Labor Type	Data Zip Notes
2095.48	033105350400		Building Beams(based on the typical bay selected)		C.Y	. \$113.11 \$ -	\$ -	\$ 113.11	\$ 237,019.74 \$	-	\$ - \$	237,019.74	\$ 124.32 \$ - \$	- \$ 124	.32 \$ 260,510	07 \$ -	\$-	\$ 260,510.07 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
2156	033105350400		Slabs (took average and based on the typical bay selected)		C.Y	. \$113.11 \$ -	\$ -	\$ 113.11	\$ 243,865.16 \$		\$ - \$	243,865.16	\$ 124.32 \$ - \$	- \$ 124	.32 \$ 268,033	92 \$ -	\$-	\$ 268,033.92 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
540.11	033105350400		Columns (took average and based on the typical bay selected)		C.Y	. \$113.11 \$ -	\$ -	\$ 113.11	\$ 61,091.84 \$	-	s - s	61,091.84	\$ 124.32 \$ - \$	- \$ 124	.32 \$ 67,14	48 \$ -	s -	\$ 67,146.48 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
3661.44	033105350400		Mat Slab (calculated the the mat slab area and converted it to CYs)		C.Y	\$ 113.11 \$ -	\$-	\$ 113.11	\$ 414,145.48 \$	-	\$-\$	414,145.48	\$ 124.32 \$ \$	- \$ 124	.32 \$ 455,190	22 \$ -	\$ -	\$ 455,190.22 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
3240	033105350400		Foundation Walls		C.Y	. \$113.11 \$ -	\$-	\$ 113.11	\$ 366,476.40 \$	-	\$ - \$	366,476.40	\$ 124.32 \$ \$	- \$ 124	.32 \$ 402,794	80 \$ -	\$ -	\$ 402,796.80 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
306	033105350400		Arch. Foundation Walls		C.Y	\$ 113.11 \$ -	\$-	\$ 113.11	\$ 34,611.66 \$	-	\$-\$	34,611.66	\$ 124.32 \$ - \$	- \$ 124	.32 \$ 38,04	92 \$ -	\$-	\$ 38,041.92 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
697.9	033105350400		Roof Beams (based on typical roof bay selected)		C.Y	\$ 113.11 \$ -	\$ -	\$ 113.11	\$ 78,939.47 \$	-	\$ - \$	78,939.47	\$ 124.32 \$ - \$	- \$ 124	.32 \$ 86,762	93 \$ -	\$-	\$ 86,762.93 RR	Year 2011 Quarter 3 Structural concrete, ready mix, normal weight, 5000 psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
1655.65	033105350400		Roof Slabs (based on typical roof bay selected)		C.Y	\$ 113.11 \$ -	\$ -	\$ 113.11	\$ 187,270.57 \$	-	\$ - \$	187,270.57	\$ 124.32 \$ - \$	- \$ 124	.32 \$ 205,830	41 \$ -	\$-	\$ 205,830.41 RR	Year 2011 Quarter 3 Structural concrete, ready psi, includes local aggregate, sand, Portland cement and water, delivered, excludes all additives and treatments
2793.38	033105700050		Project Beams Placement	:20	60 1.067 C.Y	\$ - \$ 49.4	45 \$ 13.94	4 \$ 63.39	\$-\$	138,132.64	\$ 38,939.72 \$	177,072.36	\$ - \$ 80.52 \$ 1	5.37 \$ 99	.89 \$	\$ 224,922.5	96 \$ 42,934.25	\$ 267,857.21 RR	Year 2011 Quarter 3 012 Structural concrete, placing, beam, small, elevated, pumped, includes strike off & consolidation, excludes material
540.11	033105700600		Columns Placement C	20	90 0.711 C.Y	. \$ - \$ 32.9	97 \$ 9.3	1 \$ 42.28	\$ - \$	17,807.43	\$ 5,028.42 \$	22,835.85	\$ - \$ 53.26 \$ 1	0.21 \$ 63	.47 \$	\$ 28,766.2	26 \$ 5,514.52	\$ 34,280.78 RR	Year 2011 Quarter 3 012 Structural concrete, placing, column, square or round, pumped, 18" thick, includes strike off & consolidation, excludes material
3811.65	033105701500		Slabs Placement C	20	160 0.4 C.Y	. \$ - \$18.6	64 \$ 5.2	3 \$ 23.87	\$ - \$	71,049.16	\$ 19,934.93 \$	90,984.09	\$ - \$ 29.80 \$	5.75 \$ 3	.55 \$	\$ 113,587.1	7 \$ 21,916.99	\$ 135,504.16 RR	Year 2011 Quarter 3 012 Structural concrete, placing, elevated slab, pumped, 6° to 10° thick, includes strike off & consolidation, excludes material
3661.44	033105702950		Mat Placement C	:20	400 0.16 C.Y	\$ - \$ 7.4	48 \$ 2.1	0 \$ 9.58	\$-\$	27,387.57	\$ 7,689.02 \$	35,076.60	\$ - \$ 12.05 \$	2.30 \$ 14	.35 \$	\$ 44,120.3	35 \$ 8,421.31	\$ 52,541.66 RR	Year 2011 Quarter 3 012 Guarter 3 012 Year 20 C Y, includes strike off & consolidation, excludes material
68153	033529300125			:10 :	2000 0.012 S.F	\$ - \$ 0.5	58 \$ -	\$ 0.58	\$ - \$	39,528.74	\$ - \$	39,528.74	\$ - \$ 0.93 \$	- \$ (.93 \$	\$ 63,382.2	29 \$ -	\$ 63,382.29 RR	Year 2011 Quarter 3 012 Concrete finishing for unspecified flatwork, bull float & manual float, excludes placing, striking off & consolidating
24406.56	033529600600		Cast In Place Walls (based on average wall height)	Cefi	300 0.027 S.F	\$ 0.30 \$ 1.3	38 \$ -	\$ 1.68	\$ 7,321.97 \$	33,681.05	\$ - \$	41,003.02	\$ 0.33 \$ 2.16 \$	- \$ 2	.49 \$ 8,054	16 \$ 52,718.	7 \$ -	\$ 60,772.33 RR	Year 2011 Quarter 3 012 Concrete finishing, walls, float finish, 1/16" thick

5508	033533500100	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	6400 (0.001 S	.F. \$ (0.39	\$ 0.06 \$	- \$ 0.45	5 \$	2,148.12	\$ 330.4	8 \$	- \$	2,478.60	\$ 0.43	\$ 0.10	\$-	\$	0.53 \$	2,368.44 \$	550.80 \$	- \$	2,919.24	RR	Year 2011 Quarter 3 1012 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	exture stamping, - first application of ake colored her, excludes g, striking off & idating
5508	033533500110	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	6400 (0.001 S	.F. \$	- 3	\$ 0.06 \$	- \$ 0.06	ô\$	-	\$ 330.4	8 \$	- \$	330.48	\$-	\$ 0.10	\$-	\$	0.10 \$	- \$	550.80 \$	- \$	550.80	RR	Year 2011 012 Slab tex step 2 -	exture stamping, - bull float, excludes g, striking off &
5508	033533500130	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	6400 (0.001 S	.F. \$ (0.19	\$ 0.06 \$	- \$ 0.25	5\$	1,046.52	\$ 330.4	8\$	- \$	1,377.00	\$ 0.21	\$ 0.10	\$-	\$	0.31 \$	1,156.68 \$	550.80 \$	- \$	1,707.48	RR	Year 2011 Quarter 3 1012 112 112 112 112 112 112 112 112 11	exture stamping, - second application shake colored her, excludes g, striking off & lidating
5508	033533500140	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	3 Cefi	1280 (0.019 S	.F. \$	-	\$ 0.98 \$	- \$ 0.98	в\$	-	\$ 5,397.8	4 \$	- \$	5,397.84	\$-	\$ 1.51	\$-	\$	1.51 \$	- \$	8,317.08 \$	- \$	8,317.08	RR	Year 2011 Quarter 3 012 step 4 - float & s exclude	exture stamping, - bull float, manual a steel trowel, les placing, striking consolidating
5508	033533500150	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	6400 (0.001 S	.F. \$ (0.08	\$ 0.06 \$	- \$ 0.14	4 \$	440.64	\$ 330.4	8\$	- \$	771.12	\$ 0.09	\$ 0.10	\$-	\$	0.19 \$	495.72 \$	550.80 \$	- \$	1,046.52	RR	Year 2011 Quarter 3 012 shake o agent, e	exture stamping, - application of dry colored release excludes placing, g off & consolidating
5508	033533500160	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	3 Cefi	2400	0.01 S	.F. \$ ⁻	1.44	\$ 0.52 \$	- \$ 1.96	6\$	7,931.52	\$ 2,864.1	6\$	- \$	10,795.68	\$ 1.58	\$ 0.81	\$-	\$	2.39 \$	8,702.64 \$	4,461.48 \$	- \$	13,164.12	RR	Year 2011 Quarter 3 012 step 6 - remove placing, consolid	exture stamping, - place, tamp & re mats, excludes g, striking off & lidating
5508	033533500170	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	1280 (0.006 S	.F. \$	-	\$ 0.33 \$	- \$ 0.33	3 \$	-	\$ 1,817.6	:4 \$	- \$	1,817.64	\$-	\$ 0.51	\$-	\$	0.51 \$	- \$	2,809.08 \$	- \$	2,809.08	RR	Year 2011 Quarter 3 1012 12 12 12 12 12 12 12 12 12 12 12 12 1	exture stamping, - touch up edges, ints & simulated ines, excludes g, striking off & lidating
5508	033533500400	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	1600 (0.005 S	.F. \$	-	\$ 0.25 \$	- \$ 0.25	5 \$	-	\$ 1,377.0	0\$	- \$	1,377.00	\$-	\$ 0.41	\$-	\$	0.41 \$	- \$	2,258.28 \$	- \$	2,258.28	RR	Year 2011 Quarter 3 012 step 8 - 3000 ps exclude	exture stamping, - pressure wash @ osi after 24 hours, les placing, striking consolidating
5508	033533500500	Line number 033533500100 through 0335335005000 correspond to Arch. walls finishing	1 Cefi	800	0.01 S	.F. \$ (0.49	\$ 0.52 \$	- \$ 1.01	1 \$	2,698.92	\$ 2,864.1	6\$	- \$	5,563.08	\$ 0.54	\$ 0.81	\$-	\$	1.35 \$	2,974.32 \$	4,461.48 \$	- \$	7,435.80	RR	Year 2011 Quarter 3 012 step 9 - cure/se dry, exc	exture stamping, - roll 2 coats eal compound when ccludes placing, g off & consolidating
91635.8	032110600202	Total rebar lbs in project columns	4 Rodm	3000 (0.011 Lt	o. \$ (0.43	\$ 0.57 \$	- \$ 1.00	D \$	39,403.39	\$ 52,232.4	1 \$	- \$	91,635.80	\$ 0.46	\$ 0.95	\$-	\$	1.41 \$	42,152.47 \$	87,054.01 \$	- \$	129,206.48	RR	Year 2011 Quarter 3 012 column: grade 6 accesso	orcing Steel, in place, ns, #3 to #7, A615, 60, incl labor for sories, excl material cessories
464858.22	032110600402	All project slabs	4 Rodm	5800 (0.006 Lt	o. \$ (0.45	\$ 0.30 \$	- \$ 0.75	5 \$	209,186.20	\$ 139,457.4	.7 \$	- \$	348,643.67	\$ 0.49	\$ 0.50	\$-	\$	0.99 \$	227,780.53 \$	232,429.11 \$	- \$	460,209.64	RR	Year 2011 Quarter 3 012 A615, g for acce	orcing Steel, in place, ed slabs, #4 to #7, grade 60, incl labor cessories, excl al for accessories
168691.68	032110600552	MAT Slab #9 rebars	4 Rodm	7200 (0.004 Lt	o. \$ (0.43	\$ 0.23 \$	- \$ 0.66	6\$	72,537.42	\$ 38,799.0	9\$	- \$	111,336.51	\$ 0.46	\$ 0.40	\$-	\$	0.86 \$	77,598.17 \$	67,476.67 \$	- \$	145,074.84	RR	Year 2011 Quarter 3 012 footings grade 6 accesso	orcing Steel, in place, gs, #8 to #18, A615, 60, incl labor for sories, excl material cessories
6080.62	032110600102	Total rebar lbs in project beams	4 Rodm	3200	0.01 Lt	o. \$ (0.43	\$ 0.53 \$	- \$ 0.96	6\$	2,614.67	\$ 3,222.7	3\$	- \$	5,837.40	\$ 0.46	\$ 0.89	\$-	\$	1.35 \$	2,797.09 \$	5,411.75 \$	- \$	8,208.84	RR	Year 2011 Quarter 3 012 #7, A61 labor fo	orcing Steel, in place, s and girders, #3 to 515, grade 60, incl or accessories, excl al for accessories
125575.53	032110600702	Total rebar lbs in project foundation walls (took most typical found. wall)	4 Rodm	6000 (0.005 Lt	o. \$ (0.43	\$ 0.29 \$	- \$ 0.72	2 \$	53,997.48	\$ 36,416.9	10 \$	- \$	90,414.38	\$ 0.46	\$ 0.47	\$-	\$	0.93 \$	57,764.74 \$	59,020.50 \$	- \$	116,785.24	RR	Year 2011 Quarter 3 012 walls, # grade 6 accesso	orcing Steel, in place, #3 to #7, A615, 60, incl labor for sories, excl material cessories
15334.425	031113202500	Forms for project beams	C2	320	0.15 S	FCA \$ 2	2.04	\$ 6.87 \$	- \$ 8.91	1 \$	31,282.23	\$ 105,347.5	i0 \$	- \$	136,629.73	\$ 2.25	\$ 11.24	\$-	\$ 1	13.49 \$	34,502.46 \$	172,358.94 \$	- \$	206,861.39	RR	Year 2011 Quarter 3 012 beams interior, 1 use, in	concrete forms, s and girders, r, plywood, 24" wide, includes shoring, ng, bracing, stripping eaning
9711.8	031113256500	Forms for project columns	C1	190 (0.168 S	FCA \$ 2	2.43	\$ 7.53 \$	- \$ 9.96	6\$	23,599.67	\$ 73,129.8	15 \$	- \$	96,729.53	\$ 2.67	\$ 12.27	\$-	\$ 1	14.94 \$	25,930.51 \$	119,163.79 \$	- \$	145,094.29	RR	Year 2011 Quarter 3 012 column 24" x 24 erecting and clear	
3542.4	031113850150	Forms for project foundation walls	C2	280 (0.171 L.	F. \$ ^	1.94	\$ 7.86 \$	- \$ 9.80	D \$	6,872.26	\$ 27,843.2	6\$	- \$	34,715.52	\$ 2.13	\$ 12.82	\$ -	\$ 1	14.95 \$	7,545.31 \$	45,413.57 \$	- \$	52,958.88	RR	Year 2011 Quarter 3 012 012 box out thick, or perimet erecting and clea	concrete forms, wall, ut for opening, to 16" over 10 S.F. (use eter), includes ng, bracing, stripping eaning
68153	031113351000	Forms for project slabs	C2	470 (0.102 S	.F. \$ 3	3.16	\$ 4.67 \$	- \$ 7.83	3 \$	215,363.48	\$ 318,274.5	i1 \$	- \$	533,637.99	\$ 3.48	\$ 7.64	\$-	\$ 1	11.12 \$	237,172.44 \$	520,688.92 \$	- \$	757,861.36	RR	Year 2011 Quarter 3 012 elevate plywood includes	concrete forms, ed slab, flat plate, od, to 15' high, 1 use, es shoring, erecting, g, stripping and ng
Total											\$2299864.81	\$1137953.0	3 \$7159	92.09	\$3509409.94						\$2521308.43	\$1861025.06	\$78787.07	\$4461120.54			

Appendix C General Conditions Estimate

Table 2.2: Primary Personnel															
Item	Item Quantity Unit HRS/WK Unit Labor Total Labor														
Project Executive	156	WKS	8	\$1,128	\$175,968										
Project Engineer	156	WKS	40	\$2,000	\$312,000										
Project Manager	156	WKS	40	\$3,558	\$555,048										
Superintendent	135	WKS	40	\$4,038	\$545,130										
MEP Coordinator	160	WKS	40	\$3,558	\$569,280										
Project Accountant	156	WKS	8	\$1,632	\$254,592										
				TOTAL	\$2,242,290										

Table 2.3:	Field Office	Expen	se & Temporary F	acilities	
Item	Quantity	Unit	Unit Material Cost	Total Material Cost	Total Cost
Field Office Expense					
Office Trailers - Set Up	1	LS	\$12,500	\$12,500	\$12,500
Office Trailers - Rental	36	MOS	\$2,400	\$86,400	\$86,400
Electric - Consumption	36	MOS	\$600	\$21,600	\$21,600
Water & Sanitary Consumption	36	MOS	\$250	\$9,000	\$9,000
Telephones - Monthly	36	MOS	\$285	\$10,260	\$10,260
Furniture	1	LS	\$30,000	\$30,000	\$30,000
Stationary & Supplies	36	MOS	\$1,150	\$41,400	\$41,400
Copier - (purchase)	2	LS	\$52,500	\$105,000	\$105,000
Fax Machine - Purchase	1	LS	\$2,500	\$2,500	\$2,500
Computer Equipment	36	MOS	\$3,108	\$111,888	\$111,888
Progress Photos	34	MOS	\$625	\$21,250	\$21,250
Safety Supplies	36	MOS	\$235	\$8,460	\$8,460
				SUB-TOTAL	\$460,258
Temporary Facilities					
Porta-Johns	20	MOS	\$1,450	\$29,000	\$29,000
Temp. Storage Trailers	20	MOS	\$500	\$10,000	\$10,000
Project Signs	36	MOS	\$1,200	\$43,200	\$43,200
Tool Rentals	36	MOS	\$500	\$18,000	\$18,000
Housing Expenses	36	MOS	\$6,647	\$239,292	\$239,292
Travel Expenses	36	MOS	\$5,996	\$215,856	\$215,856
Automobile Mileage	36	MOS	\$10,125	\$364,500	\$364,500
Meeting Expenses	36	MOS	\$525	\$18,900	\$18,900
				SUB-TOTAL	\$938,748
				TOTAL	\$1,399,006

Appendix D LEED Scorecard

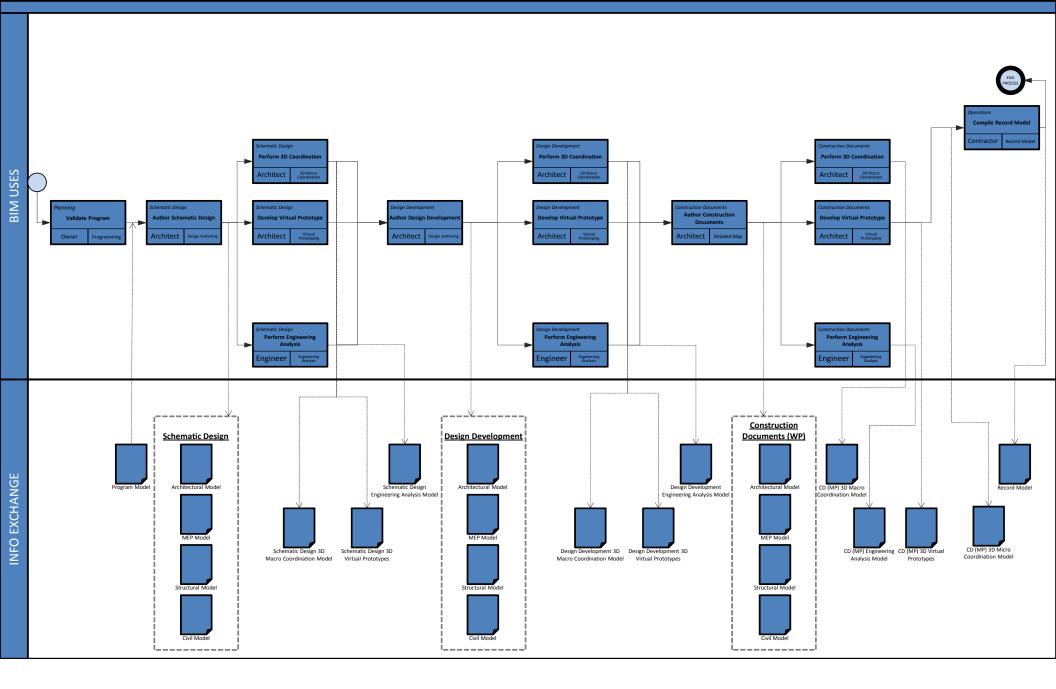
LEED 2009 for New Construction and Major Renovations

Project Checklist

10 7 9 Sustainable	e Sites Possible Points:	26		P	Materia	als and Resources, Continued	
Y ? N				N			
	struction Activity Pollution Prevention		2			Recycled Content	1 to 2
	Selection	1	1 1		redit 5	Regional Materials	1 to 2
	elopment Density and Community Connectivity	5				Rapidly Renewable Materials	1
	vnfield Redevelopment	1	1	C	redit 7	Certified Wood	1
	rnative Transportation–Public Transportation Access	6	1 0			Environmental Quality Devicto	45
	rnative Transportation–Bicycle Storage and Changing Rooms	1	4 3	8	naoor	Environmental Quality Possible Points:	15
	rnative Transportation—Low-Emitting and Fuel-Efficient Vehicles			_		Minimum Indone Air Ovelity Deefermente	
	rnative Transportation—Parking Capacity		Y			Minimum Indoor Air Quality Performance	
	Development–Protect or Restore Habitat	1	Y			Environmental Tobacco Smoke (ETS) Control	
	Development-Maximize Open Space	1	_			Outdoor Air Delivery Monitoring	1
	mwater Design-Quantity Control					Increased Ventilation	1
	mwater Design—Quality Control	1	1			Construction IAQ Management Plan—During Construction	1
	t Island Effect—Non-roof		1			Construction IAQ Management Plan–Before Occupancy	1
	t Island Effect–Roof	1	1			Low-Emitting Materials—Adhesives and Sealants	1
1 Credit 8 Light	t Pollution Reduction	1	1			Low-Emitting Materials—Paints and Coatings	1
A Water Effic	Dessible Deinter	10	1			Low-Emitting Materials—Flooring Systems	1
8 Water Effic	ciency Possible Points:	10	1			Low-Emitting Materials—Composite Wood and Agrifiber Products Indoor Chemical and Pollutant Source Control	1
Note	ar Use Deduction 20% Deduction		1				1
	er Use Reduction—20% Reduction	24-4	1			Controllability of Systems-Lighting	1
	er Efficient Landscaping	2 to 4	_			Controllability of Systems—Thermal Comfort	1
	vative Wastewater Technologies er Use Reduction	2 2 to 4				Thermal Comfort–Design Thermal Comfort–Verification	1
2 Credit 3 Wate		2 to 4				Daylight and Views–Daylight	1
7 9 1 Energy and	Atmosphere Possible Points:	35				Daylight and Views–Daylight Daylight and Views–Views	1
7 9 1 Elleryy ariu		30			reun o.z	Daylight and views—views	I
Y Prereq 1 Fund	damental Commissioning of Building Energy Systems	[6		nnovat	tion and Design Process Possible Points:	6
Y Prereq 2 Minin	mum Energy Performance						
Y Prereq 3 Fund	damental Refrigerant Management		1	С	redit 1.1	Innovation in Design: Specific Title	1
5 2 Credit 1 Optin	mize Energy Performance	1 to 19	1	С	redit 1.2	Innovation in Design: Specific Title	1
1 Credit 2 On-Si	Site Renewable Energy	1 to 7	1	С	redit 1.3	Innovation in Design: Specific Title	1
Credit 3 Enha	anced Commissioning	2	1	С	redit 1.4	Innovation in Design: Specific Title	1
Credit 4 Enha	anced Refrigerant Management	2	1	С	redit 1.5	Innovation in Design: Specific Title	1
3 Credit 5 Meas	surement and Verification	3	1	С	redit 2	LEED Accredited Professional	1
Credit 6 Greet	en Power	2					
			4	F	Region	al Priority Credits Possible Points:	4
2 5 7 Materials a	Ind Resources Possible Points:	14		_			
_			1			Regional Priority: Specific Credit	1
	age and Collection of Recyclables		1			Regional Priority: Specific Credit	1
	ding Reuse—Maintain Existing Walls, Floors, and Roof	1 to 3	1			Regional Priority: Specific Credit	1
	ding Reuse-Maintain 50% of Interior Non-Structural Elements	1	1	С	redit 1.4	Regional Priority: Specific Credit	1
	struction Waste Management	1 to 2					
2 Credit 3 Mate	erials Reuse	1 to 2	41 24			Possible Points:	110
					Certified 4	0 to 49 points Silver 50 to 59 points Gold 60 to 79 points Platinum 80 to 110	

Sterling and Francine Clark Art Institute VECC+PLANT

11.19.2010


Appendix E BIM Worksheets and Plans

BIM Goals Worksheet

Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Aid the the maintenance and operation of the Art Museum and its assets and artifacts.	Asset Management, 3D Coordination
2	Automated systems analysis (Thermal Comfort and Lighting), Efficient Energy Consumption, Improving the quality of the building services.	Engineering Analysis, LEED Evaluation
3	Ensure building is operating to specified design and sustainable standards (Continuing to maintain LEED standards after building occupancy)	Building Systems Analysis, LEED Evaluation
3	Assisting in planning for adding a future restaurant	Space Management and Tracking, 3D Coordination
3	Accelerate design review and LEED certification process and improve communication between project participants in order to achieve LEED credits	LEED Evaluation, 3D Coordination

BIM Use*	Value to High / Med / Low	Responsible Partv	Value to High / Med / Low	Cap Scale 1-	ability R	ating (1 = Low)	Additio nal	Notes	Procee d with YES / NO / MAYBE
				Resources	Competency	Experience			
Building Systems Analysis	MED	MEP Engineer Architect	HIGH MED						YES
3D Coordination (Construction)		Contractor Subcontractors	HIGH HIGH						YES
		Designer	MED						j
Engineering Analysis	HIGH	MEP Engineer Architect Owner	HIGH MED LOW						YES
3D Coordination (Design)	HIGH	Architect MEP Engineer Structural Engineer	HIGH MED HIGH						YES
Asset Management	HIGH	Owner Architect	HIGH HIGH						YES
Sustainability (LEED) Anlysis	MED	Contractor MEP Engineer Architect	MED HIGH HIGH						YES
Space Management and Tracking	LOW	Architect Owner Contractor	HIGH MED LOW						MAYBE
4D Modeling									NO
	T			[]
Site Utilization Planning									NO
Layout Control & Planning									NO
Site Analysis									NO
Design Reviews									NO
Existing Conditions Modeling									NO
Design Authoring									NO
Programming	1								NO

